[1]李金城,丁军君,杨 阳,等. 径向转向架地铁车辆动力学性能及车轮损伤研究[J].机车电传动,2019,(01):1.[doi:10.13890/j.issn.1000-128x.2019.01.120]
 LI Jincheng,DING Junjun,YANG Yang,et al. Research on Dynamic Performance and Wheel Damage of Metro Vehicle with Radial Bogie[J].Electric Drive for Locomotives,2019,(01):1.[doi:10.13890/j.issn.1000-128x.2019.01.120]
点击复制

 径向转向架地铁车辆动力学性能及车轮损伤研究()
分享到:

机车电传动[ISSN:1000-128X/CN:43-1125/U]

卷:
期数:
2019年01期
页码:
1
栏目:
城市轨道车辆
出版日期:
2019-01-10

文章信息/Info

Title:
 Research on Dynamic Performance and Wheel Damage of Metro Vehicle with Radial Bogie
作者:
 李金城1丁军君1杨 阳1吴朋朋2李 芾1
 (1. 西南交通大学 机械工程学院,四川 成都 610031;
2. 中铁物轨道科技服务集团有限公司,北京 100036)
Author(s):
 LI Jincheng1 DING Junjun1 YANG Yang1 WU Pengpeng2 LI Fu1
 ( 1. School of Mechanical Engineering, Southwest Jiaotong University, Chengdu, Sichuan 610031, China;2. China Railway Materials Track Technology Service Co., Ltd., Beijing 100036, China )
关键词:
 地铁车辆导向机构径向转向架动力学性能车轮损伤
Keywords:
 metro vehicle steering mechanism radial bogies dynamic performance wheel damage
分类号:
U231;U270.1+1
DOI:
10.13890/j.issn.1000-128x.2019.01.120
文献标志码:
A
摘要:
 为研究地铁车辆的动力学性能,分析了径向机构的导向原理,建立了传统、自导向、迫导向3 种地铁车辆动力学模型,并根据车轮滚动接触疲劳损伤模型对车辆通过曲线时的车轮损伤进行计算。计算结果表明:车辆径向机构加强了车辆部件间的连接,优化了车辆稳定性及横向平稳性的指标;迫导向车辆在曲线运行时具有较大优势,且各项评价指标均优于自导向车辆;3 种车辆模型运行于相同线路时,迫导向车辆车轮损伤值最小,在曲线半径为300 m 时仅为传统地铁车辆车轮损伤的21%,自导向车辆与传统车辆车轮损伤较大,且随着曲线半径的增大自导向车辆车轮损伤小于传统车辆。地铁车辆安装迫导向机构可以有效地减小轮轨间作用力,减缓车轮损伤。
Abstract:
 In order to study the dynamic performance of metro vehicles, the steering principle of radial mechanism was analyzed, three dynamic models of metro vehicles were established, which were traditional, self-steering and forced-steering and according to the wheel rolling contact fatigue damage model, the wheel damage of vehicle passing curve was calcalated. The results showed that the radial mechanism of the vehicle strengthened the connection between the vehicle components and optimized the stability and lateral smoothness of the vehicle, the forced-steering vehicle had a greater advantage in curve operation, and all the evaluation indexes were better than the self-steering vehicle. When the three vehicle models run on the same line, the wheel damage of the forced-steering vehicle was the smallest, which was only 21% of the traditional metro vehicle wheels when the curve radius was 300 m. The damage of the self-steering vehicle and the traditional vehicle wheels was greater, and the damage of the self-steering vehicle wheels was less than the traditional vehicle wheels with the increase of the curve radius. So, the installation of forced steering mechanism for metro vehicles could effectively reduce the wheel rail interaction force and reduce wheel damage.

参考文献/References:

 [1]WICKENS A H. Comparative stability of bogie vehicles with passive and active guidance as influenced by friction and traction[J]Vehicle System Dynamics,2009,47(9):1137-1146.
[2]卜继玲,傅茂海,严隽耄. 摆式客车迫导向径向转向架导向机构参数研究[J]. 西南交通大学学报,2000,35(6):614-618.
[3] 张俊峰. 地铁线路曲线半径和列车速度对轮轨磨耗的影响[J].城市轨道交通研究,2014,17(6):99-103.
[4]颜怡翥. 广州地铁5 号线小半径曲线钢轨磨耗分析[J]. 城市轨道交通研究,2011,14(6):55-57.
[5]刘宏友,李莉,李文学. 杠杆式迫导向转向架动力学性能研究[J]. 中国铁道科学,2002,23(3):37-44.
[6]砥上 靖弘. 日本银座线地铁车辆采用导向转向架的运行状况[J]. 国外铁道车辆,2016,53(1):26-30.
[7]飯田,浩平. 交叉杆式自导向转向架动力学性能分析[J]. 国外铁道车辆, 2007, 44(6):22-27.
[8]刘振明,胡用生. 自导向径向转向架的研制[J]. 铁道车辆,2008,46(6):22-24.
[9]刘宏友,曾京,李文学. 米轨客车迫导向转向架动力学性能研究[J]. 西南交通大学学报,2002,37(5):579-583.
[10]刘宏友,曾京,李文学. 迫导向转向架导向机构参数对动力学性能的影响[J]. 铁道车辆,2002,40(7):1-4.
[11]丁军君,孙树磊,李芾,等. 车轮滚动接触疲劳与磨耗耦合关系数值模拟[J]. 机械工程学报,2012,48(16):86-90.
[12]金学松,刘启跃. 轮轨摩擦学[M]. 北京:中国铁道出版社,2004.
[13]卜继玲. 主动悬挂摆式列车组运行性能的研究[D]. 成都:西南交通大学,2001.
[14]NIELSEN J C O. Train-track interaction and mechanisms of irregular wear on wheel and rail surfaces[J]. Vehicle System Dynamics,2003,40(1/2/3):3-54.
[15]SIMSON SA,COLE C. Simulation of active steering control for curving under traction in hauling locomotives[J]. Vehicle System Dynamics,2011,49(3):481-500.
[16]黎琳,沈钢. 地铁车辆转向架导向性能的评价方法及目标值[J].城市轨道交通研究,2013,16(12):32-36.
[17]黄运华,李芾,傅茂海,等. 120 km/h B 型地铁车辆动力学性能研究[J]. 机车电传动,2009(5):27-29.
[18]中华人民共和国建设部.地铁设计规范:GB 50157—2013[S].北京:中国计划出版社,2003.
[19]TUNNA J,SINCLAIR J,PEREZ J. The development of a wheel wear and rolling contact fatigue model–RSSB report for task T549[R]. London: Rail Safety and Standards Board,2007.
[20]SAWLEY K. Rail side wear,track technology course[R]. Derby:British Rail Research, 1993.
[21]张萌. 北京地铁车辆车轮常见失效类型及其对策[J]. 铁道机车车辆,2013, 33(3):81-84.

相似文献/References:

[1]杨晓林,王烟平.地铁车辆辅助逆变器过流保护的原因分析及改进[J].机车电传动,2015,(03):82.[doi:10.13890/j.issn.1000-128x.2015.03.023]
[2]严志勇,曾明高,罗国永,等.地铁车辆辅助逆变器的并网控制[J].机车电传动,2015,(04):59.[doi:10.13890/j.issn.1000-128x.2015.04.016]
 YAN Zhiyong,ZENG Minggao,LUO Guoyong,et al.Parallel Control of Auxiliary Inverters for Metro Vehicle[J].Electric Drive for Locomotives,2015,(01):59.[doi:10.13890/j.issn.1000-128x.2015.04.016]
[3]张兴宝,唐家龙,李 涛.西安地铁2 号线车辆司控器级位错乱故障的原因分析及整改方案[J].机车电传动,2015,(05):84.[doi:10.13890/j.issn.1000-128x.2015.05.023]
[4]陈 燕.受电弓状态动态检测系统在成都地铁2 号线的应用[J].机车电传动,2015,(05):91.[doi:10.13890/j.issn.1000-128x.2015.05.025]
 CHEN Yan.Application of the Pantograph Dynamic Detection System in Chengdu Metro Line 2[J].Electric Drive for Locomotives,2015,(01):91.[doi:10.13890/j.issn.1000-128x.2015.05.025]
[5]刘高坤,张江,王树森,等.直线电机地铁车辆动力学性能仿真研究的新方法[J].机车电传动,2015,(02):103.[doi:10.13890/j.issn.1000-128x.2015.02.025]
 LIU Gaokun,ZHANG Jiang,WANG Shusen,et al.New Method of Dynamics Performance Simulation for Metro Vehicle with Linear Motor[J].Electric Drive for Locomotives,2015,(01):103.[doi:10.13890/j.issn.1000-128x.2015.02.025]
[6]王寿峰,由建宏.地铁车辆空气弹簧压力急升引起总风欠压开关动作的对策[J].机车电传动,2014,(06):78.[doi:10.13890/j.issn.1000-128x.2014.06.021]
 WANG Shoufeng,YOU Jianhong.Measures of Air Spring Pressure Rapid Rising Resulting in Main Air Switch Triggered for Metro Vehicle[J].Electric Drive for Locomotives,2014,(01):78.[doi:10.13890/j.issn.1000-128x.2014.06.021]
[7]丁荣军,张志学,李红波. 轨道交通能源互联网的思考[J].机车电传动,2016,(01):1.[doi:10.13890/j.issn.1000-128x.2016.01.001]
 DING Rongjun,ZHANG Zhixue,LI Hongbo. An Overview on Rail Transit Energy Internet[J].Electric Drive for Locomotives,2016,(01):1.[doi:10.13890/j.issn.1000-128x.2016.01.001]
[8]江 伟,张薇琳,王伟陈.地铁车辆辅助逆变器并联供电模式分析[J].机车电传动,2015,(06):63.[doi:10.13890/j.issn.1000-128x.2015.06.017]
 JIANG Wei,ZhANG Weilin,WANG Weichen.Analysis of Parallel Operation Power Supply for Metro Vehicle Auxiliary Inverter[J].Electric Drive for Locomotives,2015,(01):63.[doi:10.13890/j.issn.1000-128x.2015.06.017]
[9]周晓明,肖华,陈超录.长沙地铁2号线车辆三大核心系统集成[J].机车电传动,2014,(04):1.[doi:10.13890/j.issn.1000-128x.2014.04.001]
 ZHOU Xiao-ming,XIAO Hua,CHEN Chao-lu.Three Core Systems Integration in Changsha Metro Line 2[J].Electric Drive for Locomotives,2014,(01):1.[doi:10.13890/j.issn.1000-128x.2014.04.001]
[10]马喜成,李梁,刘家栋,等.地铁车辆客室门门间距取值分析与建议[J].机车电传动,2014,(04):65.[doi:10.13890/j.issn.1000-128x.2014.04.017]
 MA Xi-cheng,LI Liang,LIU Jia-dong,et al.Analysis and Suggestion on Distances between the Centers of Adjacent Passenger Doors for Metro Vehicle[J].Electric Drive for Locomotives,2014,(01):65.[doi:10.13890/j.issn.1000-128x.2014.04.017]
[11]丁 杰,何艳飞,曾亚平,等. 地铁车辆辅助变流器的噪声测试及优化[J].机车电传动,2017,(05):1.[doi:10.13890/j.issn.1000-128x.2017.05.109]
 DING Jie,HE Yanfei,et al. Noise Test and Optimization of Auxiliary Converter for Metro Vehicle[J].Electric Drive for Locomotives,2017,(01):1.[doi:10.13890/j.issn.1000-128x.2017.05.109]
[12]王 睿. 基于机器视觉的城市轨道交通对标停车系统研究[J].机车电传动,2010,(02):1.[doi:10.13890/j.issn.1000-128x.2019.02.120]
 WANG Rui. Research on Benchmarking Parking System of Urban Rail Transit Based on Machine Vision[J].Electric Drive for Locomotives,2010,(01):1.[doi:10.13890/j.issn.1000-128x.2019.02.120]

备注/Memo

备注/Memo:
 收稿日期:2018-03-20;修回日期:2018-04-12
基金项目:国家重点研发计划项目(2016YFB1200501)
作者简介:李金城(1990-),男,博士研究生,主要研究方向为轨道车辆动力学分析及结构强度分析。
更新日期/Last Update: 2018-12-29