[1]魏高恒,陈晓昊,罗世辉,等. 轨道高低不平顺对磁浮车辆动力学性能的影响[J].机车电传动,2019,(04):1.[doi:10.13890/j.issn.1000-128x.2019.04.101]
 WEI Gaoheng,CHEN Xiaohao,LUO Shihui,et al. Influence of Track Vertical Irregularity on Dynamic Performance of Maglev Vehicles[J].Electric Drive for Locomotives,2019,(04):1.[doi:10.13890/j.issn.1000-128x.2019.04.101]
点击复制

 轨道高低不平顺对磁浮车辆动力学性能的影响()
分享到:

机车电传动[ISSN:1000-128X/CN:43-1125/U]

卷:
期数:
2019年04期
页码:
1
栏目:
研究开发
出版日期:
2019-08-31

文章信息/Info

Title:
 Influence of Track Vertical Irregularity on Dynamic Performance of Maglev Vehicles
作者:
 魏高恒陈晓昊罗世辉马卫华
 (西南交通大学 牵引动力国家重点实验室,四川 成都 610031)
Author(s):
 WEI Gaoheng CHEN Xiaohao LUO Shihui MA Weihua
 ( State Key Laboratory of Traction Power, Southwest Jiaotong University, Chengdu, Sichuan 610031, China )
关键词:
 磁浮列车轨道不平顺电磁悬浮力SIMPACK 软件车辆动力学
Keywords:
 maglev train track irregularity electromagnetic suspension force SIMPACK software vehicle dynamic
分类号:
U237
DOI:
10.13890/j.issn.1000-128x.2019.04.101
文献标志码:
A
摘要:
 根据悬浮电磁铁产生的悬浮力为分布力这一特性,建立了多力元模拟单悬浮电磁铁线圈悬浮力的磁浮车辆垂向动力学模型,利用SIMPACK 多体动力学软件建立了单力元、三力元、五力元模拟单悬浮电磁铁线圈悬浮力的磁浮车辆动力学模型,分析比较了多力元模拟悬浮电磁铁线圈悬浮力和实际悬浮力之间的差异,并且在不同波长轨道高低不平顺激励下进行了仿真计算,利用计算结果分析了不同波长的轨道垂向激励对磁浮车辆系统动力学指标的影响规律,得到了磁浮车辆对不同波长的轨道垂向激励动力响应的基本规律,证明了单力元模拟悬浮电磁铁线圈悬浮力的磁浮车辆动力学模型在轨道短波激励仿真计算中的局限性。
Abstract:
 According to the characteristics of the distributed force generated by the suspension electromagnet, the maglev vehicle vertical dynamic model whose suspension force generated by single electromagnet coil was simulated by multi-force elements was established. The maglev vehicle dynamic models was established by SIMPACK software which suspension forces generated by single electromagnet coil was simulated by single force element and three force elements and five force elements respectively. The difference between the actual levitation force and the levitation force simulated by multi-force elements was analyzed and compared. The simulation calculation was carried out under the excitation of track irregularity of different wavelengths. The influence of track vertical irregularities excitation of different wavelengths on the dynamics index of the maglev vehicle system was analyzed. The law of the dynamic response of the maglev vehicle to the different wavelength vertical excitation was obtained. The limitation of dynamic simulation of maglev vehicle dynamic model which suspension force was simulated by single force element with short-wave excitation was proved.

参考文献/References:

 [1] LEE H W, KIM K C, LEE J. Review of maglev train technologies[J]. IEEE Transactions on Magnetics, 2006, 42(7): 1917-1925.
[2] 赵春发. 磁悬浮车辆系统动力学研究[D]. 成都: 西南交通大学,2004.
[3] LU Guangyan. Development and application of the maglev transportation system[J]. IEEE Transactions on Applied Superconductivity, 2008, 18(2): 92-99.
[4] REN S B, ROMEIJN A, KLAP K. Dynamic simulation of the maglev vehicle/guideway system[J]. Journal of Bridge Engineering,2010, 15(3): 269-278.
[5] YAU J D. Response of a maglev vehicle moving on a series of guideways with differential settlement[J]. Journal of Sound and Vibration, 2009, 324(3/4/5): 816-831.
[6] 张耿, 李杰, 杨子敬. 低速磁浮轨道不平顺功率谱研究[J]. 铁道学报, 2011, 33(10): 73-78.
[7] 翟婉明, 赵春发. 磁浮车辆/ 轨道系统动力学( Ⅰ )——磁/ 轨相互作用及稳定性[J]. 机械工程学报, 2005, 41(7): 1-10.
[8] ZHAO C F, ZHAI W M. Maglev vehicle/guideway vertical random response and ride quality[J]. Vehicle System Dynamics, 2002,38(3): 185-210.
[9] 汪科任, 罗世辉, 宗凌潇, 等. 新型磁浮车动力学仿真分析[J].振动与冲击, 2017, 36(20): 23-29.
[10] 魏冲锋. 轨道不平顺功率谱时域转换及其应用研究[D]. 成都:西南交通大学, 2012.
[11] 时瑾, 魏庆朝. 线路不平顺对高速磁浮铁路动力响应特性的影响[J]. 工程力学, 2006, 23(1): 154-159.
[12] 蒋海波, 罗世辉, 董仲美. 线路不平顺对低速磁浮车辆动态响应的影响[J]. 铁道机车车辆, 2007, 27(3): 30-32.
[13] 李小珍, 洪沁烨, 耿杰, 等. 中低速磁浮列车- 轨道梁竖向耦合模型与验证[J]. 铁道工程学报, 2015(9): 103-108.
[14] 黎松奇. EMS 磁浮列车悬浮系统振动机理及抑制方法研究[D].成都: 西南交通大学, 2016.
[15] SHI J, WEI Q C, ZHAO Y. Analysis of dynamic response of the high-speed EMS maglev vehicle/guideway coupling system with random irregularity[J]. Vehicle System Dynamics, 2007, 45(12):1077-1095.
[16] LIU Y Z, DENG W X, GONG P. Dynamics of the bogie of maglev train with distributed magnetic forces[J]. Shock and Vibration,2015, 2015: 1-12. DOI: 10.1155/2015/896410.
[17] BRZEZINA W, LANGERHOLC J. Lift and side forces on rectangular pole pieces in two dimensions[J]. Journal of Applied Physics, 1974, 45(4): 1869-1872.
[18] 曹广忠, 潘剑飞, 黄苏丹, 等. 磁悬浮系统控制算法及实现[M].北京: 清华大学出版社, 2013.
[19] 谢钦. 新型中低速磁浮车辆空气弹簧应用研究[D]. 成都: 西南交通大学, 2017.
[20] 罗仁, 石怀龙. 铁道车辆系统动力学及应用[M]. 成都: 西南交通大学出版社, 2018.

相似文献/References:

[1]丁荣军,张志学,李红波. 轨道交通能源互联网的思考[J].机车电传动,2016,(01):1.[doi:10.13890/j.issn.1000-128x.2016.01.001]
 DING Rongjun,ZHANG Zhixue,LI Hongbo. An Overview on Rail Transit Energy Internet[J].Electric Drive for Locomotives,2016,(04):1.[doi:10.13890/j.issn.1000-128x.2016.01.001]
[2]胡基贵,刘天赋. 从现代有轨电车技术的发展看中国研究方向[J].机车电传动,2016,(02):1.[doi:10.13890/j.issn.1000-128x.2016.02.001]
 Hu Jigui,Liu Tianfu. Technical Development Direction of China Modern Tramcar[J].Electric Drive for Locomotives,2016,(04):1.[doi:10.13890/j.issn.1000-128x.2016.02.001]
[3]董利芳,穆俊斌,张 闯,等. 基于均值法的地铁网络通信配置方案设计[J].机车电传动,2016,(05):1.[doi:10.13890/j.issn.1000-128x.2016.05.106]
 DONG Lifang,MU Junbin,ZHANG Chuang,et al. Design of Metro Network Communication Configuration based on Mean Value[J].Electric Drive for Locomotives,2016,(04):1.[doi:10.13890/j.issn.1000-128x.2016.05.106]
[4]付 彬,罗世辉,刘晓宇,等. 带径向机构的铰接式单轴转向架独立轮对导向特点分析[J].机车电传动,2016,(05):1.[doi:10.13890/j.issn.1000-128x.2016.05.101]
 FU Bin,LUO Shihui,LIU Xiaoyu,et al. Steering Characteristic of Independent Wheelset of Articulated Single-axle Bogie with Radial Mechanism[J].Electric Drive for Locomotives,2016,(04):1.[doi:10.13890/j.issn.1000-128x.2016.05.101]
[5]倪大成,应 婷,张 宇. 机车牵引主电路接地检测回路共模电压研究[J].机车电传动,2016,(05):1.[doi:10.13890/j.issn.1000-128x.2016.05.105]
 NI Dacheng,YING Ting,ZHANG Yu. Research on Grounding-protection Equipment Common-mode Voltage of Electric Locomotive Traction Main Circuit[J].Electric Drive for Locomotives,2016,(04):1.[doi:10.13890/j.issn.1000-128x.2016.05.105]
[6]汤 永,李 辉,张 涛. 基于闭塞时间模型的列车追踪间隔时间研究[J].机车电传动,2016,(05):1.[doi:10.13890/j.issn.1000-128x.2016.05.104]
 Tang Yong,Li Hui,ZHANG Tao. Research on Train Headway based on Blocking Time Model[J].Electric Drive for Locomotives,2016,(04):1.[doi:10.13890/j.issn.1000-128x.2016.05.104]
[7]武学良,刘银涛,郝占红. 电力机车牵引电机通风系统比较[J].机车电传动,2016,(05):1.[doi:10.13890/j.issn.1000-128x.2016.05.103]
 WU Xueliang,LIU Yintao,HAO Zhanhong. Summarization of Electric Locomotive Traction Ventilation System[J].Electric Drive for Locomotives,2016,(04):1.[doi:10.13890/j.issn.1000-128x.2016.05.103]
[8]张兴宝. 地铁列车制动距离及制动减速度相关问题研究[J].机车电传动,2016,(05):1.[doi:10.13890/j.issn.1000-128x.2016.05.107]
 ZHANG Xingbao. Research on the Related Problems of Braking Distance and Deceleration of Metro Trains[J].Electric Drive for Locomotives,2016,(04):1.[doi:10.13890/j.issn.1000-128x.2016.05.107]
[9]章志兵,张志学,黄 超. 机车车载谐波治理装置的研制[J].机车电传动,2016,(05):1.[doi:10.13890/j.issn.1000-128x.2016.05.100]
 ZHANG Zhibing,ZHANG Zhixue,HUANG Chao. Development of Harmonic Restraining Devices on Locomotives[J].Electric Drive for Locomotives,2016,(04):1.[doi:10.13890/j.issn.1000-128x.2016.05.100]
[10]李 明,李明高,刘 楠,等. 超高速动车组新头型方案设计与验证[J].机车电传动,2016,(06):1.[doi:10.13890/j.issn.1000-128x.2016.06.103]
 LI Ming,LI Minggao,LIU Nan,et al. Design and Verification of New Head Type of Super High-speed EMUs[J].Electric Drive for Locomotives,2016,(04):1.[doi:10.13890/j.issn.1000-128x.2016.06.103]
[11]矫岩峻,刘思恺,马 啸,等. 中低速磁浮交通多车协同利用制动能量的研究[J].机车电传动,2017,(04):1.[doi:10.13890/j.issn.1000-128x.2017.04.106]
 JIAO Yanjun,LIU Sikai,MA Xiao,et al. Research on Multi-train Cooperative Utilization of Regenerative Braking Energy for Low-speed Maglev Traffic[J].Electric Drive for Locomotives,2017,(04):1.[doi:10.13890/j.issn.1000-128x.2017.04.106]

备注/Memo

备注/Memo:
收稿日期:2019-02-27
基金项目:国家重点研发计划项目(2016YFB1200601-A03)
作者简介:魏高恒(1994—),男,硕士研究生,主要研究方向为磁浮车辆系统动力学。
更新日期/Last Update: 2019-07-01