[1]刘上源,阳光武,肖守讷,等.空气弹簧气室载荷对焊接构架疲劳强度影响[J].机车电传动,2019,(05):40-45.[doi:10.13890/j.issn.1000-128x.2019.05.009]
 LIU Shangyuan,YANG Guangwu,XIAO Shoune,et al.Influence of Air Spring Chamber Pressure on Fatigue Strength of Welded Frame[J].Electric Drive for Locomotives,2019,(05):40-45.[doi:10.13890/j.issn.1000-128x.2019.05.009]
点击复制

空气弹簧气室载荷对焊接构架疲劳强度影响()
分享到:

机车电传动[ISSN:1000-128X/CN:43-1125/U]

卷:
期数:
2019年05期
页码:
40-45
栏目:
研究开发
出版日期:
2019-09-10

文章信息/Info

Title:
Influence of Air Spring Chamber Pressure on Fatigue Strength of Welded Frame
文章编号:
1000-128X(2019)05-0040-06
作者:
刘上源阳光武肖守讷杨 冰朱 涛
(西南交通大学 牵引动力国家重点实验室,四川 成都 610031)
Author(s):
LIU Shangyuan YANG Guangwu XIAO Shoune YANG Bing ZHU Tao
( State Key Laboratory of Traction Power, Southwest Jiaotong University, Chengdu, Sichuan 610031, China )
关键词:
焊接构架空气弹簧疲劳强度 JIS 标准 Goodman 图仿真
Keywords:
welded frame air spring fatigue strength JIS standardGoodman diagram simulation
分类号:
U260.331+.8
DOI:
10.13890/j.issn.1000-128x.2019.05.009
文献标志码:
A
摘要:
为保证轨道车辆结构安全性,针对二系悬挂采用空气弹簧的转向架焊接构架,基于 JIS 标准的疲劳评价方法和 Goodman 图法,根据 EN 13749 主要运营工况进行加载,从工程应用角度出发,以构架焊接成型后是否可从外部进行实时监测和检测为评判标准,将侧梁上盖板单边角焊缝分为梁内焊根和梁外焊趾,将侧梁双边角焊缝分为梁内角焊缝和梁外角焊缝分别进行疲劳校核,完成了焊接构架侧梁角焊缝全面的疲劳评估。以是否添加空气弹簧气室压力作为研究变量,依照运动中机械载荷带来的空气弹簧气室压力变化进行气室载荷加载,研究空气弹簧气室压力对构架疲劳强度的影响。结果表明: 在 4 种焊缝特征类型中,上盖板单边角焊缝焊根和背面焊接位置角焊缝基于 JIS 标准疲劳设计未满足疲劳强度要求;侧梁上盖板单边角焊缝受空气弹簧气室压力交变作用影响,焊根部位疲劳安全系数降低 7.1%,焊趾部位疲劳安全系数降低 29.8%; 而侧梁内侧、外侧双边角焊缝受空气弹簧气室压力交变作用影响较小,疲劳安全因子降低仅 2% 左右。
Abstract:
In order to ensure the structural safety of railway vehicles, aiming at the welded frame with air spring for secondarysuspension, based on JIS standard fatigue evaluation method and Goodman diagram method, loading is carried out according to themain operating conditions of EN 13749. From the view of engineering application, according to whether the frame can be monitoredand inspected in time from outside after welded, the unilateral fillet weld of upper cover plate of side sill was divided into the innerwelding root and the outer welding toe, and the side sill bilateral fillet weld was divided into the inside fillet weld and the outside filletweld for fatigue checking respectively. The comprehensive fatigue assessment of the side sill of the welded frame was completed.Taking the air spring chamber pressure as the research variable, the influence of air spring chamber pressure on the fatigue strength ofthe frame was studied by loading the air spring chamber pressure according to the change of the air spring chamber pressure causedby the mechanical load in motion. The results showed that: among the four types of weld characteristics, unilateral side fillet weld rootof upper cover plate and back weld position fillet weld did not meet the fatigue strength requirement based on JIS standard. Under theinfluence of the air spring chamber pressure alternating action, the fatigue safety factor at the root of the unilateral fillet weld decreasesby 7.1%, and the fatigue safety factor at the toe of the unilateral fillet weld decreases by 29.8%. However, the effect of air springchamber pressure alternation on the both sides bilateral fillet weld of side sill is less, and the fatigue safety factor decreases by only2%.?In order to ensure the structural safety of railway vehicles, aiming at the welded frame with air spring for secondarysuspension, based on JIS standard fatigue evaluation method and Goodman diagram method, loading is carried out according to themain operating conditions of EN 13749. From the view of engineering application, according to whether the frame can be monitoredand inspected in time from outside after welded, the unilateral fillet weld of upper cover plate of side sill was divided into the innerwelding root and the outer welding toe, and the side sill bilateral fillet weld was divided into the inside fillet weld and the outside filletweld for fatigue checking respectively. The comprehensive fatigue assessment of the side sill of the welded frame was completed.Taking the air spring chamber pressure as the research variable, the influence of air spring chamber pressure on the fatigue strength ofthe frame was studied by loading the air spring chamber pressure according to the change of the air spring chamber pressure causedby the mechanical load in motion. The results showed that: among the four types of weld characteristics, unilateral side fillet weld rootof upper cover plate and back weld position fillet weld did not meet the fatigue strength requirement based on JIS standard. Under theinfluence of the air spring chamber pressure alternating action, the fatigue safety factor at the root of the unilateral fillet weld decreasesby 7.1%, and the fatigue safety factor at the toe of the unilateral fillet weld decreases by 29.8%. However, the effect of air springchamber pressure alternation on the both sides bilateral fillet weld of side sill is less, and the fatigue safety factor decreases by only2%.?

参考文献/References:

[1] 周张义 , 李芾 . 高速货车转向架焊接部件疲劳强度研究 [J]. 中国铁道科学 , 2010, 31(6): 128-130.

[2] PO KIM N P, KIM J S, SEO S I, et al. Experimental study on thefatigue strength of the bogie frame for tilting railway vehicles[J].Key Engineering Materials, 2006(321/322/323): 590-593.
[3] HUANG Y M, WANG T S. Two-axle bogie design for electricalmultiple unit. Part 1: Finite element analysis of bogie frame fatiguestrength[J]. International Journal of Materials & Product Technology,1999, 14(1): 74-101.
[4] 刘德刚 , 刘宏友 , 李庆升 . 转向架构架强度试验标准对比 [J]. 铁道车辆 , 2011, 49(9): 12-17.
[5] 罗华军 . 地铁车辆转向架构架结构设计和强度研究 [D]. 哈尔滨 :哈尔滨工业大学 , 2015.
[6] ESDERTS A, WILLEN J, KASSNER M. Fatigue strengthanalysis of welded joints in closed steel sections in rail vehicles[J].International Journal of Fatigue, 2012, 34(1): 112-121.
[7] 陶传琦 . 焊接转向架典型焊接结构疲劳性能与焊接工艺研究 [D].长沙 : 中南大学 , 2011.
[8] FRICKE W, KAHL A, PAETZOLD H. Fatigue assessment of rootcracking of fillet welds subject to throat bending using the structuralstress approach[J]. Welding in the World, 2006, 50(7/8): 64-74.
[9] 石冢弘道 . 转向架构架及车轴的强度与无损探伤 [J]. 国外铁道车辆 , 2000, 37(5): 37-42.
[10] 卢耀辉 , 冯振 , 陈天利 , 等 . 铁道车辆转向架构架多轴疲劳强度有限元分析方法 [J]. 北京交通大学学报 , 2014, 38(4): 26-31.
[11] LEE J H, KIM K J. Modeling of nonlinear complex stiffness ofdual-chamber pneumatic spring for precision vibration isolations[J].Journal of Sound & Vibration, 2007, 301(3/4/5): 909-926.
[12] LIU H, LEE J C. Model development and experimental researchon an air spring with auxiliary reservoir[J]. International Journal ofAutomotive Technology, 2011, 12(6): 839-847.
[13] ZHU H, YANG J, ZHANG Y, et al. Nonlinear dynamic model ofair spring with a damper for vehicle ride comfort[J]. NonlinearDynamics, 2017, 89(2): 1545-1568.
[14] 李仲兴 , 李美 , 郭继伟 , 等 . 带附加气室空气弹簧性能试验系统的搭建与试验研究 [J]. 机械工程学报 , 2012, 48(4): 98-102.
[15] 张利国 , 张嘉钟 , 回丽 , 等 . 带有双附加气室空气弹簧的隔振性能研究 [J]. 机械强度 , 2011, 33(3): 339-342.
[16] 李芾 , 付茂海 , 黄运华 , 等 . 车辆空气弹簧动力学参数特性研究[J]. 中国铁道科学 , 2003, 24(5): 91-95.
[17] 陈嫦 . 地铁车辆空气弹簧承重系统动力学分析及称重误差研究[D]. 长沙 : 中南大学 , 2011.
[18] OMAN S, NAGODE M. The influence of piston shape on air-springfatigue life[J/OL]. Fatigue & Fracture of Engineering Materials& Structures, 2017, 41(8) [2019-04-11]. https://doi.org/10.1111/ffe.12748.
[19] LI Fengxiang, DING Yumei, YAN Hua, et al. Multistep analysis ofthe mechanical performance of an air spring[J]. Journal of AppliedPolymer Science, 2008, 111(2): 1005-1012.
[20] 黄鹏 . 动力转向架焊接构架疲劳评定方法研究 [D]. 成都 : 西南交通大学 , 2014.
[21] 王悦东 , 张佳宇 . 基于改进的 Goodman 曲线的车轮疲劳强度评估方法研究 [J]. 铁道科学与工程学报 , 2017, 14(4): 827-832.
[22] 安琪 , 李芾 , 黄运华 , 等 . 基于 JIS 标准的转向架焊接构架疲劳强度评估 [J]. 机车电传动 , 2009(4): 26-29.
[23] 肖守讷 , 杨冰 , 曲天威 , 等 . EN 13749 标准在机车轴箱体强度分析中的推演应用 [J]. 机车电传动 , 2013(2): 38-41.
[24] KASSNER M. Fatigue strength analysis of a welded railway vehiclestructure by different methods[J]. International Journal of Fatigue,2012, 34(1): 103-111.
[25] 王晓东 , 吴冬华 , 唐进元 , 等 . 地铁车辆空气弹簧气压负载特性的分析与实验 [J]. 铁道科学与工程学报 , 2013, 10(5): 99-102.

相似文献/References:

[1]林达文,彭立群,黄 涛,等.轨道车辆空气弹簧振动试验台的设计及应用研究[J].机车电传动,2015,(03):86.[doi:10.13890/j.issn.1000-128x.2015.03.025]
 LIN Dawen,PENG Liqun,HUANG Tao,et al.Design and Application of Air Spring Vibration Bench for Rail Vehicle[J].Electric Drive for Locomotives,2015,(05):86.[doi:10.13890/j.issn.1000-128x.2015.03.025]
[2]方松,高红星,池茂儒.基于空气弹簧非线性模型的车辆振动特性研究[J].机车电传动,2014,(06):31.[doi:10.13890/j.issn.1000-128x.2014.06.008]
 FANG Song,GAO Hongxing,CHI Maoru.Study on Vibration Characteristics of Vehicles Based on Non-linear Model of Air Spring[J].Electric Drive for Locomotives,2014,(05):31.[doi:10.13890/j.issn.1000-128x.2014.06.008]
[3]王寿峰,由建宏.地铁车辆空气弹簧压力急升引起总风欠压开关动作的对策[J].机车电传动,2014,(06):78.[doi:10.13890/j.issn.1000-128x.2014.06.021]
 WANG Shoufeng,YOU Jianhong.Measures of Air Spring Pressure Rapid Rising Resulting in Main Air Switch Triggered for Metro Vehicle[J].Electric Drive for Locomotives,2014,(05):78.[doi:10.13890/j.issn.1000-128x.2014.06.021]
[4]王艳,卜继玲,陈康,等.空气弹簧复合参数对垂向刚度特性的影响[J].机车电传动,2014,(05):34.[doi:10.13890/j.issn.1000-128x.2014.05.010]
 WANG Yan,BU Jiling,CHEN Kang,et al.Influence of Air Spring Composite Parameters on Vertical Stiffness Characteristics[J].Electric Drive for Locomotives,2014,(05):34.[doi:10.13890/j.issn.1000-128x.2014.05.010]
[5]王 艳,李东旭,张德乾.基于流固耦合的空气弹簧动刚度分析[J].机车电传动,2016,(02):28.[doi:10.13890/j.issn.1000-128x.2016.02.007]
 WANG Yan,LI Dongxu,ZHANG Deqian.Air Spring Dynamic Stiffness Analysis Based on Fluid-structure Coupling Method[J].Electric Drive for Locomotives,2016,(05):28.[doi:10.13890/j.issn.1000-128x.2016.02.007]
[6]陈灿辉,陈文海,程海涛,等.轨道车辆空气弹簧的阻尼特性试验研究[J].机车电传动,2014,(02):99.[doi:10.13890/j.issn.1000-128x.2014.02.025]
 CHEN Can-hui,CHEN Wen-hai,CHENG Hai-tao,et al.Test Research on Airspring Damping Characteristics for Rail Vehicles[J].Electric Drive for Locomotives,2014,(05):99.[doi:10.13890/j.issn.1000-128x.2014.02.025]
[7]林达文,彭立群,黄涛,等.轨道客车空气弹簧扭转试验台的设计及应用研究[J].机车电传动,2016,(04):95.[doi:10.13890/j.issn.1000-128x.2016.04.022]
 Lin Dawen,Peng Liqun,Huang Tao,et al.Design and Application Research of Railway VehiclesAir Spring Torsion Test Bench[J].Electric Drive for Locomotives,2016,(05):95.[doi:10.13890/j.issn.1000-128x.2016.04.022]
[8]杜子学,曹丹婷.跨座式单轨车辆空气弹簧失效对行车安全性能的影响研究[J].机车电传动,2016,(05):76.[doi:10.13890/j.issn.1000-128x.2016.05.019]
 Du Zixue,Cao Danting.Influence of Air Spring Failure on Operation Safetyfor Straddle-type Monorail Vehicle[J].Electric Drive for Locomotives,2016,(05):76.[doi:10.13890/j.issn.1000-128x.2016.05.019]
[9]戚壮,李芾,孙树磊,等.动车组转向架空气弹簧支撑模式研究[J].机车电传动,2013,(05):9.[doi:10.13890/j.issn.1000-128x.2013.05.007]
 QI Zhuang,LI Fu,SUN Shu-lei,et al.A Study on the Air Spring Suspension Morphologies of EMUs Bogie[J].Electric Drive for Locomotives,2013,(05):9.[doi:10.13890/j.issn.1000-128x.2013.05.007]
[10]刘亚平,米彩盈,徐传来,等.铁道车辆空气弹簧动态特性仿真分析[J].机车电传动,2013,(04):25.[doi:10.13890/j.issn.1000-128x.2013.04.014]
 LIU Ya-ping,MI Cai-ying,XU Chuan-lai,et al.Simulation and Analysis of Dynamic Characteristic of Air Spring in Railway Vehicles[J].Electric Drive for Locomotives,2013,(05):25.[doi:10.13890/j.issn.1000-128x.2013.04.014]

备注/Memo

备注/Memo:
作者简介: 刘上源(1995—),男,硕士,研究方向为机车车辆结构及可靠性、随机振动疲劳。
更新日期/Last Update: 2019-10-10