[1]卢 力,吴 蔚,金之俭,等.适用于高速电动磁浮的车载高温超导磁体综合设计[J].机车电传动,2019,(06):66-70.[doi:10.13890/j.issn.1000-128x.2019.06.016]
 LU Li,WU Wei,JIN Zhijian,et al.Design of Automotive HTS Magnets for High-speed Electric Maglev[J].Electric Drive for Locomotives,2019,(06):66-70.[doi:10.13890/j.issn.1000-128x.2019.06.016]
点击复制

适用于高速电动磁浮的车载高温超导磁体综合设计()
分享到:

机车电传动[ISSN:1000-128X/CN:43-1125/U]

卷:
期数:
2019年06期
页码:
66-70
栏目:
研究开发
出版日期:
2019-11-10

文章信息/Info

Title:
Design of Automotive HTS Magnets for High-speed Electric Maglev
文章编号:
1000-128X(2019)06-0066-05
作者:
卢 力吴 蔚金之俭洪智勇
(上海交通大学 电气工程系,上海 200240)
Author(s):
LU Li WU Wei JIN Zhijian HONG Zhiyong
( Department of Electrical Engineering, Shanghai Jiaotong University, Shanghai 200240, China )
关键词:
电动磁浮 高温超导磁体 有限元仿真
Keywords:
electric suspension HTS magnets finite element simulation
分类号:
U237
DOI:
10.13890/j.issn.1000-128x.2019.06.016
文献标志码:
A
摘要:
第二代高温超导带材制备的超导磁体可以工作在15~77 K热力学温度下,相比于工作在4.2 K温度以下(液氦温区)的低温超导磁体,制冷成本更低,可以摆脱我国对液氦稀缺资源的依赖。文章对标山梨磁浮测试线车载低温磁体的公开数据,进行了高温超导磁体总体结构的初步设计,并基于有限元仿真,对磁体的电磁、力学传递结构和漏热情况进行分析,得到一种适用于全尺寸高速电动磁浮的车载高温超导磁体的综合设计方案。
Abstract:
The superconducting magnet based on the second-generation high-temperature superconducting ( HTS ) tape can work at 15 K to 77 K. Compared with the low-temperature superconducting ( LTS ) magnet working below 4.2 K ( the liquid helium temperature zone ), the refrigeration cost of HTS magnets is lower, which can get rid of the scarce resources of liquid helium in China. In this paper, the primary design of the overall structure of high temperature superconducting magnet was carried out based on the open data of the vehicle mounted low temperature magnet of the standard Yamanashi maglev test line. Based on the finite element simulation, the electromagnetic and mechanical transfer structure and heat leakage of the magnet were analyzed, and a comprehensive design scheme of the vehicle mounted high temperature superconducting magnet suitable for full-scale and high-speed electric maglev was obtained.

参考文献/References:

[1] 高斯, 林锡标, 林国龙, 等. 基于电动悬浮原理的智能可控磁悬浮小车研究[J]. 科技经济导刊, 2018, 26(18): 95.

[2] TERAI M, IGARASHI M, KUSADA S, et al. The R&D project of HTS magnets for the superconducting maglev[J]. IEEE Transactions on Applied Superconductivity, 2006, 16(2): 1124-1129.
[3] KUSADA S, IGARASHI M, KUWANO K, et al. Persistent current HTS magnet cooled by cryocooler(2)-magnet configuration and persistent current operation test[J]. IEEE Transactions on Applied Superconductivity, 2005, 15(2): 2285-2288.
[4] 服部敏雄,青山博,福士慶滋.超電導磁石の荷重支持構造,荷重支持体並びに磁気浮上列車:平4-162405[P]. 1992-06-05.
[5] HAHAKURA S, FUJINO K, KONISHI M, et al. Development of HoBCO coated conductor by PLD method[J]. Physica C: Superconductivity, 2004, 412/413/414(Part2): 931-936.[6] 李贻杰, 刘林飞, 徐达, 等. REBCO涂层导体制备技术及其进展[J]. 中国材料进展, 2011, 30(3): 16-21.
[7] MIZUNO K, SUGINO M, TANAKA M, et al. Experimental production of a real-scale REBCO magnet aimed at its application to maglev[J]. IEEE Transactions on Applied Superconductivity, 2017, 27(4): 1-5.
[8] 刘相秋, 张红波. 一种随机振动Von Mises应力的计算方法研究[J]. 现代防御技术, 2017, 45(1): 40-43.
[9] KUWANO K, IGARASHI M, SKUSADA S, et al. The running tests of the superconducting maglev using the HTS magnet[J]. IEEE Transactions on Applied Superconductivity, 2007, 17(2): 2125-2128.

备注/Memo

备注/Memo:
作者简介:卢 力(1997-),男,硕士研究生,研究方向为高温超导磁体。
更新日期/Last Update: 2019-11-10