[1]漆 宇,窦泽春,丁荣军.轨道交通用功率半导体器件应用技术的研究[J].机车电传动,2020,(01):1-8.[doi:10.13890/j.issn.1000-128x.2020.01.001]
 QI Yu,DOU Zechun,DING Rongjun.Research on Power Semiconductor Converter Technologyfor Rail Transit Applications[J].Electric Drive for Locomotives,2020,(01):1-8.[doi:10.13890/j.issn.1000-128x.2020.01.001]
点击复制

轨道交通用功率半导体器件应用技术的研究()
分享到:

机车电传动[ISSN:1000-128X/CN:43-1125/U]

卷:
期数:
2020年01期
页码:
1-8
栏目:
功率半导体技术
出版日期:
2020-01-10

文章信息/Info

Title:
Research on Power Semiconductor Converter Technologyfor Rail Transit Applications
文章编号:
1000-128X(2020)01-0001-08
作者:
漆 宇窦泽春丁荣军
(中车株洲电力机车研究所有限公司,湖南 株洲 412001)
Author(s):
QI Yu DOU Zechun DING Rongjun
( CRRC Zhuzhou Institute Co., Ltd., Zhuzhu, Hunan 412001, China )
关键词:
变流技术功率半导体轨道交通芯片技术模块封装冷却散热电磁兼容
Keywords:
converter technology power semiconductor rail transit chip technology module packaging heat dissipation electromagnetic compatibility
分类号:
U264.3+7;TM46
DOI:
10.13890/j.issn.1000-128x.2020.01.001
文献标志码:
A
摘要:
大功率变流技术发展的核心在于功率半导体技术,传统硅基功率半导体器件不断迭代优化以及新型宽禁带材料半导体器件逐渐成熟,持续为轨道交通产业的发展贡献“源动力”。文章围绕功率半导体芯片技术,系统性地分析了模块封装、组件集成、冷却散热和电磁兼容等变流应用技术的最新发展成果。功率半导体器件应用技术研究的不断深入是促进轨道交通牵引装备朝着更大功率密度、更高能量转换效率和更高可靠性等方向发展的关键。
Abstract:
The core of the development of high-power converter technology lies in power semiconductor technology. The iterative optimization of traditional silicon-based power semiconductor devices and the gradually maturity of new wide-band gap material semiconductor devices continue to contribute to the development of the rail transit industry. Base on the power semiconductor chip technology, this paper systematically studied on the latest developments in the module packaging, components integration, heat dissipation, electromagnetic compatibility and so on. The continuous research on power semiconductor converter technology is the key to promote traction equipment of rail transit towards higher power density, higher efficiency, higher reliability, etc.

参考文献/References:

[1] 钱照明, 李崇坚. 电力电子——现代科学、工业和国防的重要支撑技术[J]. 变流技术与电力牵引, 2007(2): 1-5.

[2] 邱腾飞, 程建华, 李水昌, 等. 轨道交通牵引系统新技术应用综述[J]. 中国铁路, 2019(6): 83-91.
[3] 赵争鸣, 袁立强, 鲁挺, 等. 我国大容量电力电子技术与应用发展综述[J]. 电气工程学报, 2015, 10(4): 26-34.
[4] 吴郁, 刘晨静, 金锐, 等. 逆导型IGBT 技术发展综述[J]. 高电压技术, 2018, 44(10): 3221-3230.
[5] 孔德鑫, 刘洋, 何泽宇. 宽禁带电力电子器件及其应用综述(上)——碳化硅器件[J]. 变频器世界, 2018(7): 71-77.
[6] LADOUX P, MERMET M, CASARIN J, et al. Outlook for SiC devices in traction converters[C]//IEEE. 2012 Electrical Systems for Aircraft, Railway and Ship Propulsion. Bologna: IEEE, 2012: 1-6. DOI: 10.1109/ESARS.2012.6387463.
[7] UZUKA T, MASADA E. High speed rail awaits the next breakthrough of power semiconductors[J]. Materials Science Forum, 2014(778/779/780): 1071-1076.
[8] FABRE J, LADOUX P, PITON M. Characterization and implementation of dual-SiC MOSFET modules for future use in traction converters[J]. IEEE Transactions on Power Electronics, 2015, 30(8): 4079-4090.
[9] HAMADA K, HINO S, MIURA N, et al. 3.3kV/1500A power modules for the world,s first all-sic traction inverter[J]. Japanese Journal of Applied Physics, 2015, 45(4S): 04DP07.
[10] DIMARINO C, CVETKOVIC I, SHEN Z Y, et al. 10kV/120A SiC MOSFET modules for a power electronics building block (PEBB)[C]//IEEE. 2014 IEEE Workshop on Wide Bandgap Power Devices and Applications. Knoxville: IEEE, 2014: 55-58. DOI 10.1109/WiPDA.2014.6964623.
[11] LIU G Y, WU Y B, LI K J, et al. Development of high power SiC devices for rail traction power systems[J]. Journal of Crystal Growth, 2019, 507: 442-452. https://doi.org/10.1016/j.jcrysgro.2018.10.037.
[12] P?REZ-TOM?S A, BROSSELARD P, HASSAN J, et al. Schottky versus bipolar 3.3 kV SiC diodes[J]. Semiconductor Science and Technology, 2008, 23(12): 125004.
[13] AGARWAL A, FATIMA H, HANEY S, et al. A new degradation mechanism in high-voltage SiC power MOSFETs[J]. IEEE Electron Device Letters, 2007, 28(7): 587-589.[14] 佚名. 氮化镓技术的应用现状与发展趋势[J]. 半导体信息, 2016(6): 3-8.
[15] KAN Y, SEIICHI H, TAKASHI L, et al. A 3.3kV/1000A High Power Density SiC Power Module with Sintered Copper Die Attach Technology[C]. Nuremberg: PCIM Europe 2019, 7-9 May 2019. 2019: 312-317.
[16] KOTA O, HIROYUKI M, TAKUYA T, et al. A New IGBT Module with Insulated Metal Baseplate (IMB) and 7th Generation Chips[C]. Nuremberg: PCIM Europe 2015, 19-21 May 2015. 2015: 1145-1148.
[17] GILLOT C, SCHAEFFER C, FERRET R, et al. Double-sided cooling for high power IGBT modules using flip chip technology[J]. IEEE Transactions on Components and Packaging Technologies, 2001, 24(4): 698-704.
[18] 段飞. 动车组牵引变流器冷却系统冷却方式研究[J]. 科技创新与应用, 2015(10): 68.
[19] 宁珍, 张永恒, 刘军强, 等. 高速列车牵引变流器中IGBT的相变冷却实验研究[J]. 机械研究与应用, 2013, 26(3): 13-15.
[20] 贺尧. 轨道车辆电气系统结构布局对EMC电磁兼容的影响[J]. 通讯世界, 2017(16): 290.
[21] 李康旭, 李东辉. 牵引变流器电磁兼容研究现状[J]. 变频器世界, 2019(3): 63-66.

备注/Memo

备注/Memo:
作者简介:漆 宇(1987—),男,博士,高级工程师,主要从事轨道交通用变换器设计技术研究。
更新日期/Last Update: 2020-01-10