[1]宋平岗,江志强,周振邦.基于微分平坦理论MMC-RPC的PIR控制策略[J].机车电传动,2020,(01):91-97.[doi:10.13890/j.issn.1000-128x.2020.01.110]
 SONG Pinggang,JIANG Zhiqiang,ZHOU Zhenbang.PIR Control Strategy of MMC-RPC Based on Differential Flatness Theory[J].Electric Drive for Locomotives,2020,(01):91-97.[doi:10.13890/j.issn.1000-128x.2020.01.110]
点击复制

基于微分平坦理论MMC-RPC的PIR控制策略()
分享到:

机车电传动[ISSN:1000-128X/CN:43-1125/U]

卷:
期数:
2020年01期
页码:
91-97
栏目:
研究开发
出版日期:
2020-01-10

文章信息/Info

Title:
PIR Control Strategy of MMC-RPC Based on Differential Flatness Theory
文章编号:
1000-128X(2020)01-0091-07
作者:
宋平岗1江志强1周振邦2
(1.华东交通大学 电气与自动化工程学院,江西 南昌 330013;2.中车株洲所电气技术与材料工程研究院,湖南 株洲 412001)
Author(s):
SONG Pinggang1 JIANG Zhiqiang1 ZHOU Zhenbang2
( 1. School of Electrical and Automation Engineering, East China Jiaotong University, Nanchang, Jiangxi 330013, China;2. CRRC ZIC Research Institute of Electrical Technology & Material Engineering, Zhuzhou, Hunan 412001, China )
关键词:
模块化多电平换流器铁路功率调节器微分平坦理论比例积分控制器准比例谐振控制仿真
Keywords:
modular multilevel converter railway power regulator differential flatness theory proportional integral controller quasi-proportional resonance control simulation
分类号:
U223;TM76
DOI:
10.13890/j.issn.1000-128x.2020.01.110
文献标志码:
A
摘要:
为综合治理牵引供电系统的负序、无功、谐波等电能质量问题,分析V/v变压器左右两侧供电臂上的功率关系,通过转移有功功率、补偿无功功率和分离谐波功率等方式综合治理电能质量问题。同时,在对铁路功率调节器(MMC-RPC)采用准比例谐振控制的基础上引入微分平坦控制理论(FBC)。运用微分平坦理论,在MMC-RPC供电臂上的动态数学模型中选取有功电流和无功电流作为系统输出量,使其满足微分平坦系统的条件。对微分平坦系统进行李雅普诺夫稳定性分析,采用比例积分和Quasi-R并联控制,设计出微分平坦控制器。在Matlab
Abstract:
In order to deal with the negative sequence, reactive power, harmonic and other power quality problems of traction power supply system, the power relationship between the left and right power supply arms of V/v transformer was analyzed, and the power quality problems were comprehensively dealt with by means of transferring active power, compensating reactive power and separating harmonic power. At the same time, the differential flatness control theory was introduced on the basis of quasi proportional resonance control for MMC-RPC. Based on differential flatness control theory, the active current and reactive current were selected as the output of the system in the dynamic mathematical model of MMC-RPC power supply arm, so as to meet the conditions of differential flatness control system. Lyapunov stability analysis of differential flatness system was carried out, and differential flatness controller was designed by using proportional integral and Quasi-R parallel control. The simulation system was built with Matlab / Simulink software to simulate several different operating conditions, and compared with other control methods. The results verified the effectiveness and superiority of the control strategy.

参考文献/References:

[1] 宋平岗, 周振邦, 董辉. 采用虚拟惯性的MMC-RPC功率同步控制策略[J]. 电网技术, 2017, 41(12): 4014-4021.

[2] 郭鑫鑫, 李群湛, 解绍锋, 等. 电气化铁路高压电缆牵引网电气特性研究[J]. 电力自动化设备, 2015, 35(12): 132-137.
[3] MA F J, ZHU Z, MIN J, et al. Model analysis and sliding mode current controller for multilevel railway power conditioner for the V/v traction system[J]. IEEE Transactions on Power Electronics, 2019, 34(2): 1243-1253.
[4] MOCHINAGA Y, HISAMIZU Y, TAKEDA M, et al. Static power conditioner using GTO converters for AC electric railway[C]// IEEE. Conference Record of the Power Conversion Conference - Yokohama 1993. Yokohama: IEEE, 1993: 641-646. DOI: 10.1109/PCCON.1993.264181.
[5] 宋平岗, 林家通, 李云丰, 等. 基于模块化多电平的铁路功率调节器直接功率控制策略[J].电网技术, 2015, 39(9): 2511-2518.
[6] 荆龙, 唐芬, 王之赫, 等. 基于模块化多电平换流器的牵引供电系统电能质量治理方法[J].电力系统自动化, 2015, 39(11): 173-179.
[7] 闵俊, 叶盛, 何志兴, 等. 多电平铁路功率调节器的无源控制方法[J]. 电力系统自动化, 2017, 41(19): 102-109.[8] SONG S G, LIU J J, OUYANG S, et al. A modular multilevel converter based railway power conditioner for power balance and harmonic compensation in Scott railway traction system[C]// IEEE. 2016 IEEE 8th International Power Electronics and Motion Control Conference (IPEMC-ECCE Asia). Hefei: IEEE, 2016: 2412-2416.
[9] MA F, XU Q, HE Z, et al. A railway traction power conditioner using modular multilevel converter and its control strategy for high-speed railway system[J]. IEEE Transactions on Transportation Electrification, 2016, 2(1): 96-109.
[10] 宋平岗, 林家通, 李云丰, 等. 采用MMC-RPC治理牵引供电系统负序和谐波的PIR控制策略[J]. 电工技术学报, 2017, 32(12): 108-116.
[11] FLIESS M, L?VINE J, MARTIN P, et al. On differentially flat nonlinear systems[J]. Nonlinear Control Systems Design, 1993, 25(13): 159-163.[12] FLIESS M, L?VINE J, MARTIN P, et al. Flatness and defect of non-linear systems: introductory theory and examples[J]. International Journal of Control, 1995, 61(6): 13-27.
[13] FARAHANI S S, PAPUSHA I, MCGHAN C, et al. Constrained autonomous satellite docking via differential flatness and model predictive control[C]// IEEE. 2016 IEEE 55th Conference on Decision and Control (CDC). Las Vegas: IEEE, 2016: 3306-3011. DOI: 10.1109/CDC.2016.7798766.
[14] 蔡伟伟, 杨乐平, 刘新建, 等. 基于微分平坦的高超声速滑翔飞行器轨迹规划[J]. 国防科技大学学报, 2014(2): 61-67.
[15] KOTARU P, WU G F, SREENATH K. Differential-flatness and control of quadrotor(s) with a payload suspended through flexible cable(s)[Z/OL]. (2017-11-14)[2018-09-02]. https://arxiv.org/abs/1711.04895.
[16] MUKHERJEE J, KAR I N, MUKHERJEE S. Kinematic control of wheeled mobile robot: An error based differentially flat system approach[C]// IEEE. 2015 Annual IEEE India Conference (INDICON). New Delhi: IEEE, 2015: 1-6. DOI: 10.1109/INDICON.2015.7443561.
[17] 江金鱼, 黄磊. 三相并网逆变器微分平坦控制策略[J]. 电测与仪表, 2016(7): 45-50.
[18] MUNGPORN P, THOUNTHONG P, SIKKABUT S, et al. Dynamics improvement of 3-phase inverter with output LC-filter by using differential flatness based control for grid connected applications[C]// IEEE. 2016 19th International Conference on Electrical Machines and Systems (ICEMS). Chiba: IEEE, 2016: 1-6. https://ieeexplore.ieee.org/document/7837394.
[19] 宋平岗, 李云丰, 王立娜, 等. 基于微分平坦理论的模块化多电平换流器控制器设计[J]. 电网技术, 2013, 37(12): 3475-3481.
[20] RIGATOS G, ZERVOS N, SIANO P, et al. A differential flatness theory-based control approach for steam-turbine power generation units[C]// IEEE. 2018 IEEE International Conference on Industrial Technology (ICIT). Lyon: IEEE, 2018: 1107-1112. DOI: 10.1109/ICIT.2018.8352333.
[21] 刘斌, 黄清宝, 贺德强, 等. HERIC单相光伏并网逆变器无功调制及其直接功率控制[J]. 电力自动化设备, 2018, 38(4): 133-138.
[22] 陈国栋, 宋晋峰, 张亮, 等. 动态电压恢复器注入变压器的直流偏磁抑制策略[J]. 中国电机工程学报, 2014, 34(28): 4983-4989.

相似文献/References:

[1]宋平岗,董 辉,周振邦,等. 新型牵引供电系统中MMC 变流器环流无源抑制策略[J].机车电传动,2018,(01):1.[doi:10.13890/j.issn.1000-128x.2018.01.100]
 SONG Pinggang,DONG Hui,ZHOU Zhenbang,et al. Passive Circulation Suppression Strategy of MMC Converter in New TPSS[J].Electric Drive for Locomotives,2018,(01):1.[doi:10.13890/j.issn.1000-128x.2018.01.100]
[2]宋平岗,董 辉,周振邦,等.新型牵引供电系统中MMC 变流器环流无源抑制策略[J].机车电传动,2018,(01):33.[doi:10.13890/j.issn.1000-128x.2018.01.100]
 SONG Pinggang,DONG Hui,ZHOU Zhenbang,et al.Passive Circulation Suppression Strategy of MMC Converter in New TPSS[J].Electric Drive for Locomotives,2018,(01):33.[doi:10.13890/j.issn.1000-128x.2018.01.100]
[3]宋平岗,周鹏辉,周振邦.新型牵引供电系统的改进下垂控制策略[J].机车电传动,2019,(06):33.[doi:10.13890/j.issn.1000-128x.2019.06.008]
 SONG Pinggang,ZHOU Penghui,ZHOU Zhenbang.Improved Droop Control Strategy of a Novel Traction Power Supply System[J].Electric Drive for Locomotives,2019,(01):33.[doi:10.13890/j.issn.1000-128x.2019.06.008]
[4]宋平岗,周振邦,林家通,等.基于微分平坦理论的MMC-RPC 控制器设计[J].机车电传动,2017,(03):14.[doi:10.13890/j.issn.1000-128x.2017.03.003]
 SONG Pinggang,ZHOU Zhenbang,LIN Jiatong,et al.Design of Controller for MMC-RPC Based on Differential Flatness Control Theory[J].Electric Drive for Locomotives,2017,(01):14.[doi:10.13890/j.issn.1000-128x.2017.03.003]
[5]宋平岗,江志强,周振邦. 基于微分平坦理论MMC-RPC 的PIR 控制策略[J].机车电传动,2020,(01):1.[doi:10.13890/j.issn.1000-128x.2020.01.110]
 SONG Pinggang,JIANG Zhiqiang,ZHOU Zhenbang. PIR Control Strategy of MMC-RPC Based on Differential Flatness Theory[J].Electric Drive for Locomotives,2020,(01):1.[doi:10.13890/j.issn.1000-128x.2020.01.110]

备注/Memo

备注/Memo:
作者简介:宋平岗(1965—),男,博士,教授,主要从事电力电子与新能源方面的研究。
更新日期/Last Update: 2020-01-10