[1]杨慧莹,伍川辉,何 刘,等.基于WATV去噪的冲击特征提取方法在高速列车轴承故障诊断中的应用[J].机车电传动,2020,(01):108-111.[doi:10.13890/j.issn.1000-128x.2020.01.113]
 YANG Huiying,WU Chuanhui,HE Liu,et al.Application of an Impact Feature Extracting Method Based on WATVin Fault Diagnosis of High-speed Train Bearing[J].Electric Drive for Locomotives,2020,(01):108-111.[doi:10.13890/j.issn.1000-128x.2020.01.113]
点击复制

基于WATV去噪的冲击特征提取方法在高速列车轴承故障诊断中的应用()
分享到:

机车电传动[ISSN:1000-128X/CN:43-1125/U]

卷:
期数:
2020年01期
页码:
108-111
栏目:
研究开发
出版日期:
2020-01-10

文章信息/Info

Title:
Application of an Impact Feature Extracting Method Based on WATVin Fault Diagnosis of High-speed Train Bearing
文章编号:
1000-128X(2020)01-0108-04
作者:
杨慧莹伍川辉何 刘龙 莹
(西南交通大学 机械工程学院,四川 成都 610031)
Author(s):
YANG Huiying WU Chuanhui HE Liu LONG Ying
( School of Mechanical Engineering, Southwest Jiaotong University, Chengdu, Sichuan 610031, China )
关键词:
振动信号分析凸优化问题特征提取稀疏表示轴承故障诊断高速列车
Keywords:
vibration signal analysis convex optimization problem feature extraction sparse representation bearing fault diagnosis high-speed train
分类号:
U292.91+4;U260.331+.2
DOI:
10.13890/j.issn.1000-128x.2020.01.113
文献标志码:
A
摘要:
提取高速列车轴承故障振动信号中的冲击特征,可以有效地对其进行故障诊断。利用“小波-全变差(Wavelet-Total Variation, WATV)”算法能够对信号进行稀疏引导的特点,提出了基于WATV去噪的冲击特征提取方法。该算法针对含噪声冲击特征的提取问题构建了目标优化函数,该函数融合了冲击特征的保真度度量算子以及惩罚因子。利用凸优化理论可对目标函数进行求解,从而增强信号在小波域和时域的稀疏性,使得特征提取结果最优化。通过构造一仿真信号对WATV算法的有效性进行了验证,并将该方法应用于高速列车齿轮箱
Abstract:
Extracting impact features from a fault vibration signal of high-speed train bearing is significant to some fault diagnoses. Based on the fact that wavelet-total variation (WATV) algorithm is capable of inducing sparsity, an effective impact feature extracting method with WATV was proposed. In this algorithm, the objective optimization function was constructed for the extraction of noisy impact features, which combined the fidelity measurement operator and penalty factor of impact features. The convex optimization theory could be used to solve the objective function, so as to enhance the signal sparsity in wavelet domain and time domain, and optimize the feature extraction results. The validity of WATV algorithm was verified by constructing a simulation signal, and the method was applied in the fault diagnosis of gearbox bearing of high-speed train. The results showed that the method could extract the impact feature of signal well, and the fault representation in spectrum was obvious, which could be effectively applied in the fault diagnosis of high-speed train bearing.

参考文献/References:

[1] 易彩. 高速列车轮对轴承状态表征与故障诊断方法研究[D]. 成都: 西南交通大学, 2015.

[2] CHENG J S, YU D J, YANG Y. Application of an impulse response wavelet to fault diagnosis of rolling bearing[J]. Mechanical Systems and Signal Processing, 2007, 21(2): 920-929.
[3] 贺王鹏, 訾艳阳, 陈彬强. 冲击特征受控极小化通用稀疏表示及其在机械故障诊断中的应用[J]. 西安交通大学学报, 2016, 50(4): 94-99.
[4] 魏泽林. 基于非凸正则化项的小波-全变差去噪方法研究[D]. 北京: 北京交通大学, 2016.
[5] MALLAT S. A wavelet tour of signal processing: the sparse way[M]. New York: Academic Press, 2008: 292-305.
[6] DING Y, SELESNICK I W. Artifact-free wavelet denoising: Non-convex sparse regularization, convex optimization[J]. IEEE Signal Processing Letters, 2015, 22(9): 1364-1368.
[7] CHEN P Y, SELESNICK I W. Group-sparse signal denosing:Non-convex regularization, convex optimization[J]. IEEE Transactions on Signal Processing, 2014, 62(13): 3464-3478.
[8] SELESNICK I W, BAYRAM I. Sparse signal estimation by maximally sparse convex optimization[J]. IEEE Transactions on Signal Processing, 2014, 62(5): 1078-1092.
[9] 郑清彬. 分裂增广拉格朗日收缩法在基于压缩感知的磁共振成像中的应用研究[D]. 威海: 山东大学, 2014.
[10] CONDAT L. A direct algorithm for 1-D total variation denoising[J]. IEEE Signal Processing Letters, 2013, 20(11): 1054-1057.

相似文献/References:

[1]杨慧莹,伍川辉,何刘,等. 基于WATV 去噪的冲击特征提取方法在高速列车轴承故障诊断中的应用[J].机车电传动,2020,(01):1.[doi:10.13890/j.issn.1000-128x.2020.01.113]
 YANG Huiying,WU Chuanhui,HE Liu,et al. Application of An Impact Feature Extracting Method Based on WATV in Fault Diagnosis of High-speed Train Bearing[J].Electric Drive for Locomotives,2020,(01):1.[doi:10.13890/j.issn.1000-128x.2020.01.113]

备注/Memo

备注/Memo:
作者简介:杨慧莹(1994—),女,硕士研究生,主要研究方向为信号处理与故障诊断。
更新日期/Last Update: 2020-01-10