[1]邹 欢,周 宁,邹 栋,等.坡度和曲线线路对弓网受流性能影响规律研究[J].机车电传动,2020,(02):1.[doi:10.13890/j.issn.1000-128x.2020.02.000]
 ZOU Huan,ZHOU Ning,ZOU Dong,et al.Influence of Rail Line Gradient and Curve on Pantograph-Catenary Dynamic Performance[J].Electric Drive for Locomotives,2020,(02):1.[doi:10.13890/j.issn.1000-128x.2020.02.000]
点击复制

坡度和曲线线路对弓网受流性能影响规律研究()
分享到:

机车电传动[ISSN:1000-128X/CN:43-1125/U]

卷:
期数:
2020年02期
页码:
1
栏目:
出版日期:
2020-03-10

文章信息/Info

Title:
Influence of Rail Line Gradient and Curve on Pantograph-Catenary Dynamic Performance
作者:
?邹 欢1周 宁2邹 栋2张卫华2
?(1. 中铁十一局集团有限公司 勘察设计院,湖北 武汉 430000;2. 西南交通大学 牵引动力国家重点实验室,四川 成都 610031)
Author(s):
?ZOU Huan1 ZHOU Ning 2 ZOU Dong 2 ZHANG Weihua2
?( 1. Survey and Design Institute, China Railway 11th Bureau Group Co., Ltd., Wuhan, Hubei 430000, China;
2. State Key Laboratory of Traction Power, Southwest Jiaotong University, Chengdu, Sichuan 610031, China )
关键词:
高速列车 坡度平曲线竖曲线弓网关系动力学性能接触网仿真
Keywords:
high speed train gradient horizontal curve vertical curve pantograph-catenary interaction dynamic performance catenary simulation
分类号:
U264.3+4;U225.3
DOI:
10.13890/j.issn.1000-128x.2020.02.000
文献标志码:
A
摘要:
?在高速列车关键力学问题的研究中,坡度和曲线线路对弓网受流性能的影响不可忽视, 为此,采用有限元技术和多体动力学理论,搭建了全空间范围内的车弓网动力学仿真模型,对定坡度、竖曲线和平曲线区段的弓网受流性能进行了研究。研究结果表明:接触线在坡度变化率为零时,线路对弓网动态响应影响并不明显;坡度变化率为正时,线路会使弓网机械磨耗降低,受流稳定性也会降低,但弓网电气损耗增加;而坡度变化率为负时影响正好相反;平曲线和竖曲线半径越小,弓网受流稳定性越差,仿真时不可忽略,且应在平曲线和竖曲线区段的线路设计、施工、区间限速中加以考虑。
Abstract:
?In the study of the key mechanics problems in high speed train, the pantograph-catenary dynamic performance under rail line gradient and curve is one of the most important research contents. The finite element technique and multi-body dynamics theory were adopted, a whole space vehicle-pantograph-catenary coupling system simulation platform was built, and then, the dynamic response of the model runs on vertical curve track, constant slope track, horizontal curve track were calculated and studied. The results showed that, when the slope change rate is 0, the influence of line on the dynamic response of the pantograph/catenary isnot obvious; the positive slope change rate of the contact wire decreases the mechanical wear of pantograph/catenary, the stability of current is reduced, and it increases the electrical wear, but the negative slope change rate of the contact wire makes opposite; the smaller the radius of the vertical and horizontal curve, the worse the stability of the pantograph/catenary dynamic performance, which cannot be ignored in the simulation, and it should be considered in the line design, construction and interval speed limit of horizontal curve and vertical curve setting.

参考文献/References:

?[1] WU T X, BRENNAN M J. Basic analytical study of pantograph-catenary system dynamics[J]. Vehicle System Dynamics, 1998, 30(6): 443-456.
[2] ZHANG W H, LIU Y, MEI G M. Evaluation of the coupled dynamical response of a pantograph-catenary system: contact force and stresses[J]. Vehicle System Dynamics, 2006, 44(8): 645-658.
[3] COLLINA A, BRUNI S. Numerical simulation of pantographoverhead equipment interaction[J]. Vehicle System Dynamics, 2002,38(4): 261-291.
[4] ZHOU N, ZHANG W H, LI R P. Dynamic performance of a pantograph-catenary system with the consideration of the appearance characteristics of contact surfaces[J]. Journal of Zhejiang University-Science A(Applied Physics & Engineering), 2011, 12(12): 913-920.
[5] ZHANG W H, SHEN Z Y, ZENG J. Study on dynamics of coupled systems in high-speed trains[J]. Vehicle System Dynamics, 2013,2015, 51(7): 966-1016.
[6] 李丰良, 李敏, 唐建湘. 受电弓的建模与参数测试[J]. 中南大学学报( 自然科学版), 2006, 37(1): 194-199.
[7] 黄标, 张卫华, 梅桂明. 基于虚拟样机技术的受电弓/ 接触网系统研究[J]. 系统仿真学报, 2004, 16(10): 2294-2297.
[8] ZHOU N, ZOU H, LI R P, et al. Dynamic behavior of different pantograph models in simulation of pantograph and catenary interaction[C]// IEEE. 2016 35th Chinese Control Conference. Chengdu: IEEE, 2016:10242-10247.
[9] 周宁, 邹欢, 邹栋, 等. 城市轨道交通弓网系统仿真模型适应性研究[J]. 西南交通大学学报, 2017, 52(2): 408-415.
[10] 周宁, 李瑞平, 张卫华. 基于负弛度法的接触网建模与仿真[J].交通运输工程学报, 2009(4): 28-32.
[11] WANG Z W, MEI G M, ZHANG W H, et al. Effects of polygonal wear of wheels on the dynamic performance of the gearbox housing of a high-speed train[J]. Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail & Rapid Transit, 2018, 232(6):1852-1863. https://doi. org/10.1177/095440971775299.
[12] HUANG G H, ZHOU N, ZHANG W H. Effect of internal dynamic excitation of the traction system on the dynamic behavior of a high-speed train[J]. Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail & Rapid Transit, 2016, 230(8):1899-1907. https:// doi. org/10.1177/0954409715617787.
[13] 李国朋, 陈清, 王甜甜, 等. 竖曲线参数对200 km/h 速度等级机车动力学性能的影响[J]. 电力机车与城轨车辆, 2015(2): 36-39.
[14] 王代富. 基于动力分析的高速铁路竖曲线技术条件研究[D]. 成都: 西南交通大学, 2012.

相似文献/References:

[1]张卫华.高速列车耦合大系统动力学创新研究体系[J].机车电传动,2015,(04):1.[doi:10.13890/j.issn.1000-128x.2015.04.001]
 ZHANG Weihua.Study on Innovation System of Coupling Relations Dynamics in High-speed Trains[J].Electric Drive for Locomotives,2015,(02):1.[doi:10.13890/j.issn.1000-128x.2015.04.001]
[2]王广明,范乐天,魏庆龙,等.基于焊缝疲劳寿命分析的高速列车裙板结构设计[J].机车电传动,2015,(05):46.[doi:10.13890/j.issn.1000-128x.2015.05.013]
 WANG Guangming,FAN Letian,WEI Qinglong,et al.EMUs Apron Board Structural Design Based on Weld Fatigue Life Analysis[J].Electric Drive for Locomotives,2015,(02):46.[doi:10.13890/j.issn.1000-128x.2015.05.013]
[3]王华,崔利通.高速列车传动系统机电耦合仿真与分析[J].机车电传动,2015,(02):31.[doi:10.13890/j.issn.1000-128x.2015.02.009]
 WANG Hua,CUI Litong.Simulation and Analysis of Electromechanical Integration for Drive System in High-speed Trains[J].Electric Drive for Locomotives,2015,(02):31.[doi:10.13890/j.issn.1000-128x.2015.02.009]
[4]崔涛,王 琰,吴会超,等.高速列车悬挂参数全局优化方法[J].机车电传动,2015,(01):15.[doi:10.13890/j.issn.1000-128x.2015.01.004]
 CUI Tao,WANG Yan,WU Huichao,et al.Global Optimization of Suspension Parameters for High-speed Train[J].Electric Drive for Locomotives,2015,(02):15.[doi:10.13890/j.issn.1000-128x.2015.01.004]
[5]秦勇,林 帅,李宛瞳,等.高速列车系统安全可靠性分析评估方法研究[J].机车电传动,2016,(01):6.[doi:10.13890/j.issn.1000-128x.2016.01.002]
 QIN Yong,LIN Shuai,LI Wantong,et al.Research on Safety Reliability Analysis and Evaluation Methodof High-speed Train System[J].Electric Drive for Locomotives,2016,(02):6.[doi:10.13890/j.issn.1000-128x.2016.01.002]
[6]杨卫峰,冯江华,易伟民.高速列车网络控制系统安全性设计[J].机车电传动,2014,(03):14.[doi:10.13890/j.issn.1000-128x.2014.03.003]
 YANG Wei-feng,FENG Jiang-hua,YI Wei-min.Safety Design of Network Control System in High-speed Train[J].Electric Drive for Locomotives,2014,(02):14.[doi:10.13890/j.issn.1000-128x.2014.03.003]
[7]冯万盛,程畅,程海涛,等.高速车变压器用橡胶减振器研究[J].机车电传动,2014,(01):44.[doi:10.13890/j.issn.1000-128x.2014.01.010]
 FENG Wan-sheng,CHENG Chang,CHENG Hai-tao,et al.Research of Transformer Rubber Damper for High-speed Train[J].Electric Drive for Locomotives,2014,(02):44.[doi:10.13890/j.issn.1000-128x.2014.01.010]
[8]黄彩虹,等.高速车辆车体低频横向晃动的影响因素研究[J].机车电传动,2014,(01):16.[doi:10.13890/j.issn.1000-128x.2014.01.003]
 HUANG Cai-hong,LIANG Shu-lin,et al.Study on Influence Factors of Low-frequency CarbodySwaying for High-speed Vehicles[J].Electric Drive for Locomotives,2014,(02):16.[doi:10.13890/j.issn.1000-128x.2014.01.003]
[9]张志新,田爱琴,车全伟,等.高速列车车体端部吸能结构研究[J].机车电传动,2013,(01):43.[doi:10.13890/j.issn.1000-128x.2013.01.027]
 ZHANG Zhi-xin,TIAN Ai-qing,et al.Research on Energy-absorbing Structures for Two Endsof High-speed Train Car Body[J].Electric Drive for Locomotives,2013,(02):43.[doi:10.13890/j.issn.1000-128x.2013.01.027]
[10]原佳亮,林飞,方晓春,等.高速列车三电平牵引逆变器多模式PWM调制方法研究[J].机车电传动,2013,(06):20.
 YUAN Jia-liang,LIN Fei,FANG Xiao-chun,et al.Multi-mode PWM Method for Three-level Inverter of High Speed Train[J].Electric Drive for Locomotives,2013,(02):20.

备注/Memo

备注/Memo:
?作者简介:邹 欢(1991—),男,硕士,研究方向为导网系统动力学。
更新日期/Last Update: 2020-03-04