[1]韩亚鹏,张 敏,马卫华,等.永磁涡流制动与电磁涡流制动热力学特性对比分析[J].机车电传动,2020,(03):63-67.[doi:10.13890/j.issn.1000-128x.2020.03.013]
 HAN Yapeng,ZHANG Min,MA Weihua,et al.Comparative Analysis of Thermodynamic Characteristics of Permanent Magnet and Electromagnetic Eddy Current Braking[J].Electric Drive for Locomotives,2020,(03):63-67.[doi:10.13890/j.issn.1000-128x.2020.03.013]
点击复制

永磁涡流制动与电磁涡流制动热力学特性对比分析()
分享到:

机车电传动[ISSN:1000-128X/CN:43-1125/U]

卷:
期数:
2020年03期
页码:
63-67
栏目:
研究开发
出版日期:
2020-05-10

文章信息/Info

Title:
Comparative Analysis of Thermodynamic Characteristics of Permanent Magnet and Electromagnetic Eddy Current Braking
文章编号:
1000-128X(2020)03-0063-05
作者:
韩亚鹏张 敏马卫华罗世辉
(西南交通大学 牵引动力国家重点实验室,四川 成都 610031)
Author(s):
HAN Yapeng ZHANG Min MA Weihua LUO Shihui
( State Key Laboratory of Traction Power, Southwest Jiaotong University, Chengdu, Sichuan 610031, China )
关键词:
涡流制动高速列车气隙磁密制动力磁极温升永磁涡流制动有限元分析仿真
Keywords:
eddy current braking high-speed train air gap flux density braking force temperature rise of magnetic poles permanent magnet eddy current braking FEA simulation
分类号:
U292.91+4;U260.357
DOI:
10.13890/j.issn.1000-128x.2020.03.013
文献标志码:
A
摘要:
电磁涡流制动由于其不受列车黏着限制且衰减较小的优点,常用作高速列车的制动装置,但其结构尺寸和质量较大,磁极温升较高,阻碍了进一步推广应用。因此,在电磁涡流制动装置的基础上提出永磁涡流制动方案,结合理论计算和仿真分析,对比了相同极距和结构尺寸的 2 种涡流制动装置的气隙磁场,得出涡流制动力与气隙磁场的关系;计算了相同结构尺寸下永磁涡流制动和电磁涡流制动装置制动力和吸引力大小随速度的变化,同时对比分析了 2 种装置的磁极平均温度随速度的变化。研究结果表明,永磁涡流制动和电磁涡流制动的制动力计算方式具
Abstract:
Electromagnetic eddy current braking devices often used in high-speed trains due to the advantages of not being limited by train adhesion and low attenuation. However, its large size and mass, and high temperature rise of magnetic poles, prevent it from further application. In this paper, a permanent magnet eddy current braking scheme was proposed based on the electromagnetic eddy current braking device. Based on theoretical calculations and simulation analysis, the air-gap magnetic fields of two eddy-current braking devices with the same pole distance and structure size were compared, and the relationship between eddy-current braking force and air-gap magnetic field was obtained. Braking force and attractive force of permanent magnet and electromagnetic eddy current braking devices under the same structure size were calculated and the changes of average temperature of magnetic poles of two devices with speed were compared. The results show that the braking force calculation methods of permanent magnet and electromagnetic eddy current braking are equivalent. The braking force of permanent magnet eddy current braking force under the same structure can reach 3.29 times of the electromagnetic eddy current braking with standard excitation parameters. When the braking force is the same, the temperature rise of the magnetic pole of the permanent magnet eddy current brake is smaller.

参考文献/References:

[1] 吴云飞 . 高速动车组线性轨道涡流制动系统研究 [D]. 成都 : 西南交通大学 , 2017.?

[2] JANG S M, LEE S H, JEONG S S. Characteristic analysis of eddy-current brake system using the linear Halbach array[J]. IEEE Transactions on Magnetics, 2002, 38(5): 2994-2996.
[3] ANANTHA KRISHNA G L, SATHISH KUMAR K M. Investigation on eddy current braking systems–A review[J]. Applied Mechanics and Materials, 2014, 592/593/594: 1089-1093[2020-03-06]. https://www.scientific.net/AMM.592-594.1089.
[4] 应之丁 . 涡流制动技术在高速列车上的应用 [J]. 电力机车与城轨车辆 , 2004, 27(5): 19-22.
[5] 寇宝泉 , 金银锡 , 张鲁 , 等 . 考虑端部效应的混合励磁直线涡流制动器解析模型 [J]. 电工技术学报 , 2017, 32(8): 187-200.
[6] SRIVASTAVA R K, KUMAR S. An alternative approach for calculation of braking force of an eddy-current brake[J]. IEEE Transactions on Magnetics, 2009, 45(1): 150-154.
[7] CHOI J Y, MYEONG J S. Analytical magnetic torque calculations and experimental testing of radial flux permanent magnet-type eddy current brakes[J]. Journal of Applied Physics, 2012, 111(7): 07E712.
[8] GULBAHCE M O, KOCABAS D A. A comprehensive approach to determining the speed/torque relationships of eddy current brakes[J]. Electrical Engineering, 2018, 100(3): 1579-1587[2020-03-06]. https://doi.org/10.1007/s00202-017-0636-x.
[9] 王明星 , 杜慧杰 , 郝保磊 , 等 . 高速列车涡流制动技术应用研究[C]// 中国铁道学会 . 和谐共赢创新发展——旅客列车制动技术交流会论文集 . 眉山 : 中国铁道学会 , 2017: 209-213.?
[10] 应之丁 , 陈家敏 . 涡旋源密度对旋转涡流制动装置性能的影响[J]. 机车电传动 , 2019(3): 39-41.
[11] 郭其一 , 黄世泽 , 吴伟银 , 等 . 磁浮列车涡流制动热效应研究 [J]. 铁道学报 , 2012, 34(1): 29-33.
[12] 袁文琦 , 王明星 , 杨磊 , 等 . 高速磁浮列车涡流制动器磁极温升研究 [J]. 铁道车辆 , 2019, 57(8): 8-10.
?[13] 唐永春 , 叶云岳 . 永磁涡流制动的有限元分析与设计 [J]. 微电机 , 2006, 39(3): 34-36.
[14] 张圣楠 . 永磁涡流制动的电磁分析与设计 [J]. 内蒙古科技与经济 , 2005(13): 118-120.
[15] 叶乐志 , 刘玉朋 , 曹明广 , 等 . 永磁涡流缓速器制动特性分析及试验研究 [J]. 北京工业大学学报 , 2018, 44(6): 837-842.
?[16] HASSANZADEH S, REZAEI H, QIYASSI E. Analysis and optimization of permanent magnet dimensions in electrodynamic suspension systems[J]. Journal of Electrical Engineering and Technology, 2018, 13(1): 307-314.

相似文献/References:

[1]张卫华.高速列车耦合大系统动力学创新研究体系[J].机车电传动,2015,(04):1.[doi:10.13890/j.issn.1000-128x.2015.04.001]
 ZHANG Weihua.Study on Innovation System of Coupling Relations Dynamics in High-speed Trains[J].Electric Drive for Locomotives,2015,(03):1.[doi:10.13890/j.issn.1000-128x.2015.04.001]
[2]王广明,范乐天,魏庆龙,等.基于焊缝疲劳寿命分析的高速列车裙板结构设计[J].机车电传动,2015,(05):46.[doi:10.13890/j.issn.1000-128x.2015.05.013]
 WANG Guangming,FAN Letian,WEI Qinglong,et al.EMUs Apron Board Structural Design Based on Weld Fatigue Life Analysis[J].Electric Drive for Locomotives,2015,(03):46.[doi:10.13890/j.issn.1000-128x.2015.05.013]
[3]王华,崔利通.高速列车传动系统机电耦合仿真与分析[J].机车电传动,2015,(02):31.[doi:10.13890/j.issn.1000-128x.2015.02.009]
 WANG Hua,CUI Litong.Simulation and Analysis of Electromechanical Integration for Drive System in High-speed Trains[J].Electric Drive for Locomotives,2015,(03):31.[doi:10.13890/j.issn.1000-128x.2015.02.009]
[4]崔涛,王 琰,吴会超,等.高速列车悬挂参数全局优化方法[J].机车电传动,2015,(01):15.[doi:10.13890/j.issn.1000-128x.2015.01.004]
 CUI Tao,WANG Yan,WU Huichao,et al.Global Optimization of Suspension Parameters for High-speed Train[J].Electric Drive for Locomotives,2015,(03):15.[doi:10.13890/j.issn.1000-128x.2015.01.004]
[5]秦勇,林 帅,李宛瞳,等.高速列车系统安全可靠性分析评估方法研究[J].机车电传动,2016,(01):6.[doi:10.13890/j.issn.1000-128x.2016.01.002]
 QIN Yong,LIN Shuai,LI Wantong,et al.Research on Safety Reliability Analysis and Evaluation Methodof High-speed Train System[J].Electric Drive for Locomotives,2016,(03):6.[doi:10.13890/j.issn.1000-128x.2016.01.002]
[6]杨卫峰,冯江华,易伟民.高速列车网络控制系统安全性设计[J].机车电传动,2014,(03):14.[doi:10.13890/j.issn.1000-128x.2014.03.003]
 YANG Wei-feng,FENG Jiang-hua,YI Wei-min.Safety Design of Network Control System in High-speed Train[J].Electric Drive for Locomotives,2014,(03):14.[doi:10.13890/j.issn.1000-128x.2014.03.003]
[7]冯万盛,程畅,程海涛,等.高速车变压器用橡胶减振器研究[J].机车电传动,2014,(01):44.[doi:10.13890/j.issn.1000-128x.2014.01.010]
 FENG Wan-sheng,CHENG Chang,CHENG Hai-tao,et al.Research of Transformer Rubber Damper for High-speed Train[J].Electric Drive for Locomotives,2014,(03):44.[doi:10.13890/j.issn.1000-128x.2014.01.010]
[8]黄彩虹,等.高速车辆车体低频横向晃动的影响因素研究[J].机车电传动,2014,(01):16.[doi:10.13890/j.issn.1000-128x.2014.01.003]
 HUANG Cai-hong,LIANG Shu-lin,et al.Study on Influence Factors of Low-frequency CarbodySwaying for High-speed Vehicles[J].Electric Drive for Locomotives,2014,(03):16.[doi:10.13890/j.issn.1000-128x.2014.01.003]
[9]张志新,田爱琴,车全伟,等.高速列车车体端部吸能结构研究[J].机车电传动,2013,(01):43.[doi:10.13890/j.issn.1000-128x.2013.01.027]
 ZHANG Zhi-xin,TIAN Ai-qing,et al.Research on Energy-absorbing Structures for Two Endsof High-speed Train Car Body[J].Electric Drive for Locomotives,2013,(03):43.[doi:10.13890/j.issn.1000-128x.2013.01.027]
[10]原佳亮,林飞,方晓春,等.高速列车三电平牵引逆变器多模式PWM调制方法研究[J].机车电传动,2013,(06):20.
 YUAN Jia-liang,LIN Fei,FANG Xiao-chun,et al.Multi-mode PWM Method for Three-level Inverter of High Speed Train[J].Electric Drive for Locomotives,2013,(03):20.
[11]应之丁,陈家敏. 涡旋源密度对旋转涡流制动装置性能的影响[J].机车电传动,2019,(03):1.[doi:10.13890/j.issn.1000-128x.2019.03.112]
 YING Zhiding,CHEN Jiamin. Influence of Vortex Source Density on Performance of Rotatory Eddy Current Brake Device[J].Electric Drive for Locomotives,2019,(03):1.[doi:10.13890/j.issn.1000-128x.2019.03.112]
[12]应之丁,陈家敏.涡旋源密度对旋转涡流制动装置性能的影响[J].机车电传动,2019,(03):39.[doi:10.13890/j.issn.1000-128x.2019.03.112]
 YING Zhiding,CHEN Jiamin.Influence of Vortex Source Density on Performance of Rotatory Eddy Current Brake Device[J].Electric Drive for Locomotives,2019,(03):39.[doi:10.13890/j.issn.1000-128x.2019.03.112]

备注/Memo

备注/Memo:
作者简介:韩亚鹏(1995—),男,硕士研究生,主要研究方向为磁浮车辆系统动力学及涡流制动。
更新日期/Last Update: 2020-05-10