[1]李 浩,戴焕云,汪群生,等.等效锥度对 120 km/h 地铁车辆横向稳定性影响研究[J].机车电传动,2020,(03):68-72.[doi:10.13890/j.issn.1000-128x.2020.03.014]
 LI Hao,DAI Huanyun,WANG Qunsheng,et al.Research on Influence of Equivalent Conicity on Lateral Stability of 120 km/h Metro Vehicles[J].Electric Drive for Locomotives,2020,(03):68-72.[doi:10.13890/j.issn.1000-128x.2020.03.014]
点击复制

等效锥度对 120 km/h 地铁车辆横向稳定性影响研究()
分享到:

机车电传动[ISSN:1000-128X/CN:43-1125/U]

卷:
期数:
2020年03期
页码:
68-72
栏目:
研究开发
出版日期:
2020-05-10

文章信息/Info

Title:
Research on Influence of Equivalent Conicity on Lateral Stability of 120 km/h Metro Vehicles
文章编号:
1000-128X(2020)03-0068-05
作者:
李 浩戴焕云汪群生彭莘宇王 杰
(西南交通大学 牵引动力国家重点实验室,四川 成都 610031)
Author(s):
LI Hao DAI Huanyun WANG Qunsheng PENG Shenyu WANG Jie
( State Key Laboratory of Traction Power, Southwest Jiaotong University, Chengdu, Sichuan 610031, China )
关键词:
地铁车辆等效锥度横向稳定性悬挂参数仿真轨道不平顺
Keywords:
metro vehicles equivalent conicity lateral stability suspension parameters simulation track irregularity
分类号:
U231;U260.11
DOI:
10.13890/j.issn.1000-128x.2020.03.014
文献标志码:
A
摘要:
基于目前 120 km/h B 型地铁车辆在实际运营中出现车轮等效锥度较大的情况,借助 Simpack 动力学仿真软件,建立车辆多体动力学模型,还原了目前车辆在实际运营中车轮磨耗后出现的异常振动。仿真发现,车辆在车轮等效锥度为 0.5 时,车体存在因转向架蛇行造成的 5.5 Hz 振动频率和因车体上心滚摆模态被轨道不平顺激发造成的 2.5 Hz 振动频率,因此造成车体横向平稳性指标过大。通过对悬挂参数分析发现,适当增大一系横向定位刚度可有效降低车轮等效锥度较大时的车辆横向平稳性指标。
Abstract:
Based on the fact that 120 km/h B-type metro vehicles had a large wheel equivalent conicity in actual operation, a multi-body dynamic model of the vehicle was established with Simpack dynamic simulation software, which could restore the abnormal vibration after wheel wear in actual operation. Simulation results showed that when the equivalent conicity of the vehicle was 0.5, the vehicle body had 5.5 Hz vibration frequency caused by bogie hunting and 2.5 Hz vibration frequency caused by the track irregularity excitation of the upper center roll mode of the vehicle body, which resulted into large lateral stability index of the vehicle body. Through the analysis of suspension parameters, it was found that increasing the primary lateral positioning stiffness properly could effectively reduce the vehicle lateral stability index when the equivalent conicity was larger.

参考文献/References:

[1] 黄运华 , 李芾 , 付茂海 , 等 . 120 km/h B 型地铁车辆动力学性能研究 [J]. 机车电传动 , 2009(5): 27-29.

[2] 付彬 , 罗世辉 , 马卫华 , 等 . 转向架关键参数对地铁车辆提速设计的动力学分析 [J]. 机械设计与制造 , 2018(1): 12-14.
[3] 罗仁 , 石怀龙 . 铁道车辆系统动力学及应用 [M]. 成都 : 西南交通大学出版社 , 2018.
[4] 铁道部标准计量研究所 . 铁道车辆动力学性能评定和试验鉴定规范 : GB 5599—85 [S]. 北京 : 中国标准出版社 , 1986.
[5] POLACH O. Comparability of the non-linear and linearized stability assessment during railway vehicle design[J]. Vehicle System Dynamics, 2006, 44(Suppl 1): 129-138.
[6] DIEDRICHS B, BERG M, STICHEL S, et al. Vehicle dynamics of a high-speed passenger car due to aerodynamics inside tunnels[J]. Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit, 2007, 221(4): 527-545.
[7] Technical specification for interoperability relating to the ’rolling stock’ sub-system of the trans-european high-speed rail system: TSI L84—2008[S].
[8] 梁树林 , 朴明伟 , 郝剑华 , 等 . 基于 3 种典型踏面的高速转向架稳定性研究 [J]. 中国铁道科学 , 2010, 31(3): 57-63.
[9] 贾璐 , 曾京 , 刘转华 , 等 . 五种横向运动稳定性评价方法研究 [J]. 机械设计与制造 , 2012 (10): 219-221.
[10] 陈政南 , 张天婴 , 张树鹏 . 铁路工程车辆横向失稳动力学特征分析 [J]. 铁道机车车辆 , 2011, 31(3): 8-12.

相似文献/References:

[1]杨晓林,王烟平.地铁车辆辅助逆变器过流保护的原因分析及改进[J].机车电传动,2015,(03):82.[doi:10.13890/j.issn.1000-128x.2015.03.023]
[2]严志勇,曾明高,罗国永,等.地铁车辆辅助逆变器的并网控制[J].机车电传动,2015,(04):59.[doi:10.13890/j.issn.1000-128x.2015.04.016]
 YAN Zhiyong,ZENG Minggao,LUO Guoyong,et al.Parallel Control of Auxiliary Inverters for Metro Vehicle[J].Electric Drive for Locomotives,2015,(03):59.[doi:10.13890/j.issn.1000-128x.2015.04.016]
[3]张兴宝,唐家龙,李 涛.西安地铁2 号线车辆司控器级位错乱故障的原因分析及整改方案[J].机车电传动,2015,(05):84.[doi:10.13890/j.issn.1000-128x.2015.05.023]
[4]陈 燕.受电弓状态动态检测系统在成都地铁2 号线的应用[J].机车电传动,2015,(05):91.[doi:10.13890/j.issn.1000-128x.2015.05.025]
 CHEN Yan.Application of the Pantograph Dynamic Detection System in Chengdu Metro Line 2[J].Electric Drive for Locomotives,2015,(03):91.[doi:10.13890/j.issn.1000-128x.2015.05.025]
[5]刘高坤,张江,王树森,等.直线电机地铁车辆动力学性能仿真研究的新方法[J].机车电传动,2015,(02):103.[doi:10.13890/j.issn.1000-128x.2015.02.025]
 LIU Gaokun,ZHANG Jiang,WANG Shusen,et al.New Method of Dynamics Performance Simulation for Metro Vehicle with Linear Motor[J].Electric Drive for Locomotives,2015,(03):103.[doi:10.13890/j.issn.1000-128x.2015.02.025]
[6]王寿峰,由建宏.地铁车辆空气弹簧压力急升引起总风欠压开关动作的对策[J].机车电传动,2014,(06):78.[doi:10.13890/j.issn.1000-128x.2014.06.021]
 WANG Shoufeng,YOU Jianhong.Measures of Air Spring Pressure Rapid Rising Resulting in Main Air Switch Triggered for Metro Vehicle[J].Electric Drive for Locomotives,2014,(03):78.[doi:10.13890/j.issn.1000-128x.2014.06.021]
[7]江 伟,张薇琳,王伟陈.地铁车辆辅助逆变器并联供电模式分析[J].机车电传动,2015,(06):63.[doi:10.13890/j.issn.1000-128x.2015.06.017]
 JIANG Wei,ZhANG Weilin,WANG Weichen.Analysis of Parallel Operation Power Supply for Metro Vehicle Auxiliary Inverter[J].Electric Drive for Locomotives,2015,(03):63.[doi:10.13890/j.issn.1000-128x.2015.06.017]
[8]周晓明,肖华,陈超录.长沙地铁2号线车辆三大核心系统集成[J].机车电传动,2014,(04):1.[doi:10.13890/j.issn.1000-128x.2014.04.001]
 ZHOU Xiao-ming,XIAO Hua,CHEN Chao-lu.Three Core Systems Integration in Changsha Metro Line 2[J].Electric Drive for Locomotives,2014,(03):1.[doi:10.13890/j.issn.1000-128x.2014.04.001]
[9]马喜成,李梁,刘家栋,等.地铁车辆客室门门间距取值分析与建议[J].机车电传动,2014,(04):65.[doi:10.13890/j.issn.1000-128x.2014.04.017]
 MA Xi-cheng,LI Liang,LIU Jia-dong,et al.Analysis and Suggestion on Distances between the Centers of Adjacent Passenger Doors for Metro Vehicle[J].Electric Drive for Locomotives,2014,(03):65.[doi:10.13890/j.issn.1000-128x.2014.04.017]
[10]肖滋洪.地铁车辆高压供电电路过流故障诊断分析及改进[J].机车电传动,2014,(04):73.[doi:10.13890/j.issn.1000-128x.2014.04.019]

备注/Memo

备注/Memo:
作者简介:李? 浩(1995—),男,硕士研究生,主要研究方向为列车系统动力学。
更新日期/Last Update: 2020-05-10